Tag Archives: Massive MIMO

The Massive MIMO Deployment Report

An in-depth look at Massive MIMO

The idea of massive MIMO is revolutionary. The fact it’s going to market is exciting. We all looked at 5G, then overlooked how we were going to get there, solve the problems that 5G is introducing. Here is an overview of massive MIMO and what to expect now that all the smart people have made it a reality.

The report is available at:

 

I have a blog that I pulled a majority of this information from. It served as the foundation for what you’re reading here.

The report starts out with explanations of MIMO then massive MIMO so that you understand what it is and how it will work. It also gives an understanding of why it’s being deployed.

Then the report covers beamforming. This had to be broken out and explained so that you understood what makes massive MIMO so special. This is an extreme kind of beamforming that will revolutionize the way macro sites communicate with the UE device. The end-user wants more bandwidth, but that’s not what they really want. They want steady and reliable bandwidth to their device. Massive MIMO enables that to happen.

Then, we cover the network. What good is a kick-ass wireless link if your backhaul is crap? Not much!

The report gets into more ways to deploy massive MIMO and an overview of what they are and if massive MIMO makes sense. You probably want to consider how what, and where massive MIMO can be deployed. It’s a good idea to see if CRAN and small cells will be part of the massive MIMO ecosystem.

The next section is going to look at how deployment on towers and rooftops will be influenced by massive MIMO systems. I get asked all the time about the tower and how tower companies will react. It’s not necessarily the tower companies that will be concerned about the new equipment. It’s how the equipment is deployed and in what spectrum. How will installers deal with the new equipment? How will site acquisition companies work on this and what new costs will be incurred by rolling out massive MIMO. All of this is covered.

Speaking of deploying, why does size matter and what is the determining factor of size? Well, it’s spectrum among other things. Also, TDD or FDD and why it matters. This rolls into the spectrum section which is just an overview of what is out there and yet to come, in the USA at least.

This rolls into new business models for the carriers. The new business models depend on fixed or mobile systems being deployed. Which will be the 5G focus first?

Of course, there is a summary section to help you look at what’s important.

The end has resources as well as acronyms and definitions. This will help you figure out what all those acronyms mean that you’re forced to deal with. In this industry there are so many terms and groups of letters that twist your eyes when looking at them. Why are there so many? Because if we actually had to say everything in log form we would never get anything done. Unfortunately, by the time the letters are used to describe something over a long period of time we forget what the stand for. For example, LTE. Do you remember that LTE stands for or why it was named that? Maybe you don’t care, but it’s Long Term Evolution. Why that? Because it was supposed to last a very long time as the format continued to improve. That is, until 5G came out and now we say “5G” all the time. Unfortunately, LTE has lost I’s charm to most people. Not to me, I think that long-term evolution is such a cool idea, like something that Homo sapiens should be doing continuously. We should be evolving on a regular basis. I mean our knowledge, not like mutants or anything.

So, read this if you dare to learn more about massive MIMO!

The report is available at:

What’s in the Report?

Below is a quick overview of the Table of Contents for The Massive MIMO Report.

  • Overview
  • What is MIMO?
    • Where did MIMO come from?
    • Are there different types of MIMO?
  • What is massive MIMO?
    • Why do we need massive MIMO?
    • Will massive MIMO be needed everywhere?
    • What Parts make up Massive MIMO in the system?
    • What does the BBU need to do to support massive MIMO?
    • What does the Active Antenna System have to do?
  • What makes massive MIMO special?
  • What is beamforming?
    • First, a quick, high level, history lesson.
    • How does it work?
    • What spectrum does beamforming work in?
    • Who will use it? (Looking at the USA only)
    • Why cable companies should pay attention.
  • The network matters!
    • What about the backhaul?
    • What about the fronthaul?
    • How will the network meet the demands of 5G?
  • What about the extensions of the macro sites?
    • Will CRAN or C-RAN be a massive MIMO system?
    • Will Small Cells have Massive MIMO
    • What about DAS systems?
  • Will Massive MIMO be in the UE device?
  • What changes will tower companies see at the site?
    • On the Tower:
    • On the ground:
  • Will Utility costs change?
  • Massive MIMO Tower Work Overview
    • What is Massive MIMO, really?
    • What about the tower work?
      • What if you swap?
      • What is it’s new?
      • Who decides what mount is safe for massive MIMO antennas?
      • What about the cables?
    • Is it bigger or smaller? Size and weight matter!
      • How Will TIA-222 Rev H affect Massive MIMO Tower Work?
        • What is TIA-222?
        • Why does Rev H matter?
        • Why now?
        • How will this affect new deployments?
        • How does this impact 5G?
        • Resources for TIA-222:
      • Tower Crew Summary:
    • What does it mean for the suppliers and GCs?
      • Who benefits?
      • Who doesn’t benefit?
    • Economies of size with Massive MIMO
      • Why does size matter?
      • We’ll look at what effects the size.
      • What about weight?
      • Is there a difference between TDD and FDD?
        • What is FDD?
        • What is TDD?
      • What about frequency?
      • How much is too much?
      • Larger antennas cost more.
      • How has this changed from the traditional models?
      • But wait, that’s not the big picture!
      • Pros and Cons:
    • Spectrum Options
      • Mobility Connections:
    • How will Carriers deploy massive MIMO?
    • New Business Models for the Carriers:
      • Internet Service Providers
      • TV and Video
      • IOT
      • Transportation
    • Should 5G be Fixed and Mobile Wireless?
      • How does this tie into massive MIMO?
      • What’s the difference?
      • Fixed Wireless Overview
      • Mobile Overview
      • Why compare fixed to mobile?
      • Fixed Pros and Cons
      • Mobile Pros and Cons
      • Who wins?
    • MIMO Report Summary:
    • More Resources:
    • Acronyms and Definitions

The report is available at:

 

 

 

 

 

 

Be smart, be safe, and pay attention!

See Ya!

More products from TechFecta and Wade4Wireless:

5g-deployment-plan-front-cover-3k-pixels

 Get the Wireless Deployment Handbook today!

 

 

SOW Training Cover

Do you know what to put in your SOW, the details needed to get paid for milestones or job completion? 

 

Putting together your smart city tech solutions, planning, development, and more…TechFecta! Guiding you to a better plan through consulting!

 

 

 

 

The foundations below do beautiful work, helping families in their time of need. Climbers often get seriously injured or die on the job. The foundations below support those families in their time of greatest need! 

official logo

Hubble Foundation helps the families of climbers in a time of need and beyond with financial support and counseling!

tower-family-foundation-e1447069656192

Tower Family Foundation supports the families of tower climbers at the time of crisis when a climber falls with financial assistance and more.

COP Banners for Wade4wireless

Tower Safety for all your safety training!

Size matters with Massive MIMO

COP Banners for Wade4wireless

Yes, you heard me, size matters! Why, because size and weight are what the tower companies will be looking at for the new massive MIMO antennas. Let’s call them active antennas to make things easy because massive MIMO will be a given for this article.

Tower Safety for all your safety training!

Why would size matter?

Let’s look at it this way, bigger antennas cost more money all the way around. Size has a direct correlation to costs. Let me break down what costs more with a bigger antenna.

  • Larger antennas cost more to build. CapEx
  • More radio heads cost more, CapEx.
  • Larger antennas may need to have the tower structurally modified to hold the extra weight. CapEx on installation.
  • Larger antennas may raise the monthly rate on a tower. OpEx on rent.

The point here is that there have to be a balance. The carriers know that payback has to balance out with the costs. That’s where we find balance, between the costs, CapEx and OpEx, and the payback, number of subscribers and improved performance. There has to be a set point.

These active antennas may not make sense to put everywhere. Do we really need to put them near a farm where there could be a total of 20 users at any given time? Probably not unless one of those users is a CEO or a president. Power and position has privilege.

We’ll look at what effects the size.

  • Frequency matters. I’ll make this simple, the lower the frequency the larger the antenna. It’s that simple.
  • TDD or FDD matter because with FDD you will have 2 sets of radio heads and TDD only has one. FDD will be bigger because 2 sets are larger than one.
  • Size of massive MIMO, meaning the number of elements. If you have 32T by 32R, 32×32, you have 32 transmit and 32 receive elements. It doubles each time, 64×64 has 64 of each element and radio head, 128×128 has 128, and so on.

Click and follow on WordPress, Amazon, Twitter, LinkedIn, or Facebook.

Thank you!

Get on the wireless email list!

How has this changed from the traditional models?

When we had CDMA, FDD was all the rage. To have the dedicated spectrum for uplink and downlink made all the sense in the world. Then, with LTE, we thought it was nice to have dedicated spectrum each way, but the reality was that it became less of an issue and now with carrier aggregation and dynamic uplink and downlink balancing. Hey, Wi-Fi had it right all along. LTE is catching up to Wi-Fi’s lessons learned. Just like the MIMO technology, Wi-Fi had it first. LTE is putting that technology on steroids. Then 5G NR will amp it up even more. How cool is this?

I digress, sorry.

TDD or FDD?

If you think it doesn’t make a difference, it does. You see the carriers loved FDD in the CDMA world because they had efficiencies when the uplink and downlink. FDD allowed them to have dedicated uplink spectrum and downlink spectrum. This was a crucial factor for efficiency. Even with LTE is seemed to be a good thing when they had the spectrum broken apart. That is, until today, when the Get the Wireless Deployment Handbook today!efficiency of uplink and downlink balancing was not possible when dedicated spectrum up or down may cause more problems than is solves. So now, Sprint’s 3.5GHz spectrum and the CBRS 3.5GHz spectrum looks quite sexy. It allows the carrier to control uplink and downlink dynamically free of any dedicated up/down spectrum barriers. Awesome!

For instance, LTE is more like Wi-Fi now. It can be more efficient when you can have the spectrum controlled by the carrier, not dedicated. I wondered if the carriers would think about trying to change their new spectrum. It seems like now, FDD having dedicate spectrum would create limitations. Wouldn’t it be nice to control what goes up and what comes down in LTE and especially in 5G. TDD allows that because it is transmitting, Tx, and receiving, Rx, on the same elements and in the same spectrum. How cool is that? Just like Wi-Fi, only it’s LTE, soon to be a 5G format. I would think 5G will be LTE on steroids.

Why does this matter in massive MIMO? Again, the FDD system will need dedicated antenna elements paired with radio heads for transmit and dedicated elements and radio heads for receive. Therefore, a 32×32 active antenna would have 32 transmit and 32 receive elements paired with a radio head port in the antenna which would effective look like, in my mind, 64 heads in one antenna.

A TDD system could have the receive and transmit together on one element. Therefore a 64×64 active antenna would have just 64 elements paired with radio heads.

At least this is what it’s looking like right now. So, half the number of 5g-deployment-plan-front-cover-3k-pixelselements for twice the performance, in theory.

The antenna that has half the elements should be half the size, smaller antennas with less weight make for a happier installation, lower costs, and more effective rollout.

Beck to cost, elements and tiny radio heads all cost money. The payback and gain by adding more active elements has to have balance somewhere. If 64×64 costs 5 times as much as 32×32 it may not be worth putting it in. If 128×128 costs 10 times as much, then when is the payback? There has to be a balance between antenna cost and system gain.

What about frequency?

How does this effect the antenna? Well, the antenna size is determined by the band. The lower the frequency the larger the antenna, or at least the elements. That’s a normal antenna. Now that we have massive MIMO, it makes more of a difference because the radio heads are behind each element in the antenna. This can be a factor in antenna size.

The lower bands, say 1.3Ghz and lower, are going to have larger antennas that require more size just due to the lower spectrum. That is if they want 3dB of gain or more. There are many factors with antenna design which I am not going to get into, but the lower the spectrum, the larger the antenna. Remember that the carriers want plenty of gain and need to have the efficiency to put the least number of antennas on a tower, say 3, as possible. If it is a mini macro on a pole or a small cell, then you may rely more on one or two antennas to cover what you need. Lower spectrum makes that more of a challenge.

While you think it may not matter, you’re not seeing the bigger picture. Larger antennas cost money and many carriers have spectrum in many bands. In fact, why do you think that T-Mobile wants the CBRS 3.5GHz spectrum to badly? They see the value in the short-range coverage. It’s high spectrum, smaller radios and antennas, and covers the smaller areas efficiently. The deal with Sprint fell through, now they need a contingency plan and the CBRS looks inviting.

How much is too much?

Here we have the real conundrum of massive MIMO. How much is too much? Do we know the payback of massive MIMO? It looks like we need it for true 5G to roll out with all the promise we expect of 5G. I mean it’s more than just the new format of 5GNR, it’s all the features that give us Ultra Reliable Low Latency, URLL, and extreme broadband.

There has to be a balance of where we put it, how we deploy, and so on. It makes sense to put it in urban area where the payback is immediate. Lots of users can justify the cost. If we are covering cows on an IOT system, then it doesn’t make sense, does it?

If the cost of a 64×64 is 1/3 the price of a 128×128, then it may make sense to go with the 64×64 for the payback. The number of radio heads will change the price of the unit along with the size and weight. We have to be financially responsible, don’t we?

Larger antennas cost more.

Then, there is the mounting issues. They will leave it up to the construction crews to install the equipment, but they won’t like putting monstrous active antenna on the towers if the tower companies raise the rent 10 times. They also have to consider the tower modification implications. There has to be a balance.SOW Training Cover

Now, for someone with a TDD system if they find the right model. If the model makes sense, then they could lighten the load on the tower. This may or may not make the tower companies happy, they want more rent but they don’t want to modify the towers if they don’t have to. Actually, they pass that cost onto the carrier, so maybe they don’t care.

For the FDD systems, they will have to install larger active antennas because the Tx and the Rx will be split. You need 2 active element arrays. This add size, cost, and complexity to the system. However, it will enhance performance of the system. You no longer need radio heads and coax jumpers since it is an active antenna.

But wait, that’s not the big picture!

The reality is, for mobility, we have to look at what we’re replacing. If the carriers are going to upgrade to massive MIMO in their existing spectrum and replace their existing equipment, then they have an advantage.

For instance, they will install one unit. The active antenna will have fiber running right to it, direct. So there is not longer all the crap on the backend, like the radio head, the coax jumpers, and a separate antenna. All of that equipment adds problems. Let me break it down, the radio heads used to have 1 to 3 fiber pairs running to them, that will change, now there will be many more. There is more data, more overhead, and more bandwidth needed. That is why all the fiber will be connectorized.

I know I threw a lot at you, but let’s look at everything and what it means.

  • No more radio head, less room needed on the tower, the weight of the radio head is probably more than the radio heads in the active antenna. Less weight and one less point of failure.
  • No more coax means less weight, no PIM testing, one less point of failure, no reflected power, easier troubleshooting, less time of installation. For those of you that don’t know, coax jumpers take a lot of time to make, weatherproof, tighten properly, and secure properly.
  • Fiber connectors save a lot of time, in the old days tower crews had to put connectors on the fiber after they cleaned it and then test it thoroughly, all this takes a lot of time to install.

With everything in one unit, installation is quicker. Mounting should be easier. One unit to install, not many for each sector. However, now we have a huge point of failure, if the active antenna goes, we’re down hard for that sector.

One more thing, in theory, we should have electric downtilt with the massive MIMO antenna that will be controlled automatically by the system. So Azimuth is important but now we may not have to worry about the 3 degrees of downtilt like we used to.

Less time to install, easier to install, less equipment hanging on the tower. It’s a win-win all the way around. All this with increased performance. WOW!

Pros and Cons:

Pro:

  • Fiber to the antenna decreases installation complexity,
  • Active antennas are integrated,
  • Massive MIMO improves system performance for;
    • Coverage through beamforming,
    • Multi user, MU-MIMO, allows the beams to talk to multiple users simultaneously,
    • Increased throughput to each user,
    • Increased densification for power and throughput to multiple users,
  • No more coax jumpers, PIM testing, weather proofing, and so on,
  • Less weight overall due to less equipment on the tower,

Cons:

  • Increase system complexity,
  • Increased cost for antenna,
  • Could be a single point of failure, not sure about how the connection to the active antenna will work,
  • More fiber jumpers up the tower,
  • Probably increase power draw for the active antenna,

Things to think about?

  • Cost of the array, does 32×32 serve your needs or can you go 64×64 or 128×128? Which delivers the best cost for the best price?
  • If FDD, what size can you put ion the tower? Will it match the antenna size you have now?
  • Are you ready to run more fiber up the tower or across the rooftop?
  • Will the payback make sense?

How does the massive MIMO system payback the carrier?

  • Increase throughput
  • Much better densification, concentrating the power to each UE,
  • Better throughput to each UE through beamforming and multiple users talking t the same time, remember that there are multiple radio heads behind each element,
  • Less physical complexity on the tower,
  • New options to carriers for deployment,
  • In urban areas it could reduce the need for small cells in the macro’s coverage umbrella,
  • CRAN Massive MIMO greatly improves localized densification,
  • Spectral efficiency is greatly improved by the beamforming,

To learn more:

Let me know if this has helped you! Subscribe to this blog, at the top of the page or get me on Twitter @wade4wireless or wade4wireless@gmail.com or go to www.wade4wireless.com or www.techfecta.com to reach me. I do have a podcast, search Wade4Wireless wherever you get your podcasts and subscribe. Reach out on LinkedIn, https://www.linkedin.com/in/wadesarver/ or Facebook, https://www.facebook.com/Wade4Wireless/ to stay in touch. I am very reachable!

I am building reports around these blogs for massive MIMO and 5G, soon to be released. They will be available in PDF and print, let me know if you’re interested in LinkedIn and send me a message so I can tell you where to get them. They should be released by April 1st.

For more information go to:

Finally, one more thing:

I am winding down Wade4wireless because I am building up TechFecta. I have plans and I can’t do all of this at the same time. I want to build up a full-time business around this information and more. I will focus on tech, health, and philosophy. Those are the things that really fulfill me.

As you know, it’s exhausting to work full-time and do this on the side. While I really enjoy this, I have more that I want to do.

I would like to thank all of you for the support. I really appreciate it.

I will continue this for another few months, but I don’t know if I can maintain every week, it’s really a lot of work. Let me know what you think!

Be smart, be safe, and pay attention!

See Ya!

 

Tower Safety for all your safety training!

 

 

 

Get the Wireless Deployment Handbook today!

 

5g-deployment-plan-front-cover-3k-pixels

 

 

 

 

 

 

 

 

Sign-up to get all your updates!

 

SOW Training Cover

Do you know what to put in your SOW, the details needed to get paid for milestones or job completion? 

 

Putting together your smart city tech solutions, planning, development, and more….TechFecta! Guiding you to a better plan through consulting!

The foundations below do beautiful work, helping families in their time of need. Climbers often get seriously injured or die on the job. The foundations below support those families in their time of greatest need! 

official logo

Hubble Foundation helps the families of climbers in a time of need and beyond with financial support and counseling!

tower-family-foundation-e1447069656192

Tower Family Foundation supports the families of tower climbers at the time of crisis when a climber falls with financial assistance and more.

About Massive MIMO Beamforming

COP Banners for Wade4wirelessTower Safety for all your safety training!

 

What is Massive MIMO Beamforming?

Let’s put them together, beamforming and massive MIMO, and we get massive MIMO beamforming. This combination of great ideas and technology allow us to go beyond what has been done in the past.  It takes all the antenna elements to work together and separately to create 3D beamforming and with over 32 elements to push data and coverage to the outer limits. Read on to learn more.

Coming soon, the “Road to 5G” book with reports on Massive MIMO, Beamforming, and more about the trend of the tech industry.

To recap:

  • Massive MIMO is where the elements in the antenna each have an individual radio head feeding them, could transmit or receive or both (TDD).
  • Beamforming is where the beam focuses the “transmit” and/or “receive” in one specific area to avoid interference from outside sources and to increase gain and throughput.

In Massive MIMO they use 3D beamforming. This focuses the beam both vertically and horizontally. It is going to allow the element to talk to specific users if they need to. It allows the RF to focus on one area while the other elements can focus on other areas. It increases coverage and densification without moving an antenna or dropping in a small cell. WOW!Get the Wireless Deployment Handbook today!

Learn more in a blog about Massive MIMO, found here, https://wade4wireless.com/2017/11/27/what-is-massive-mimo/. Then, read the blog about beamforming, found here, https://wade4wireless.com/2018/01/08/what-is-beamforming/.

How is it done?

How can they do that? With a control beam that can track where a user is located. This was brought to light with MU-MIMO, Multi-User MIMO. It allows the elements to talk to more than one user at a time. Mainly because you have so many elements that are readily available to focus on users.

Can you imagine where you have more carriers and spectrum to communicate to the UE device? Not only that, but each element can talk to a device while the next element can talk to another simultaneously. All at the same time, using different chunks of the same spectrum along with 64 or 256 QAM. It’s really amazing, so much so there is no way I can explain how it works in detail. Sorry, look at the resources below to learn more technical details.

Here we’ll learn the high-level overview. The RF will be able to be utilized more efficiently than ever because it will be focused in a very concentrated area while other elements can concentrate on their specific users.

Please note, there is SU-MIMO, Single User MIMO, I don’t talk about that here because I think the key is to talk to as many users as possible at the same time.

While Massive MIMO Beamforming is thought of like a 5G technology, it can be and will be used in LTE. They will call it LTE Advanced, LTE-A, but really it’s LTE evolution to get more throughput. It is a critical factor in getting to 5G, so it is going to be part of the NR, New Radio. (New Radio, not a creative name at all!) I think it’s important to remember that all of these advances in LTE will be a foundation of what’s to come for 5G, but I digress, let’s get back to massive MIMO Beamforming.

Massive MIMO paves the way for 3D beamforming for several reasons. First, it’s an active antenna that has a radio head dedicate do each element. This makes it exceptionally smart. Second, it has fiber and power to the antenna which has embedded antennas, so the electronics of the element allow it to focus energy the way the radio head sees fit. That means this can pick a user, focus all of its energy on that user, and slice out RF for that user, and communicate directly with that user.

Why is the last statement so important? I am glad you asked! It’s because the UE Device doesn’t need to match the MIMO of the transmit antenna. I don’t see SAMSUNG and APPLE putting in 32 or 64 antennas on their smartphones, do you? I know they’re getting bigger, but we’re lucky they put 4 in each one. Not only that, but they have to put a crapload of RF chips in each device to handle any carrier. It’s a lot to ask of a smartphone, yet we expect it today, don’t we? Don’t deny it! You would be pissed if you couldn’t take your device and use it on another carrier or maybe even in another country. Now, pile that on top of all the formats they need to communicate, like GSM, CDMA, LTE, TDD. To make it simpler for you, 3G, 4G, Wi-Fi, and soon 5G. Yowsa that is a lot to ask of that device that used to fit in your hand. Now we want them bigger, but not too big!

What made all of this possible? The OFDM format, it helped us build to what we have today. The other thing that helps is beam tracking. The beam can track where the user is and where they are going to keep the RF concentrated on that user, beam steering.

Why does it matter?

Why does massive MIMO beamforming matter? You ask some great questions! It matters because where we once thought that the antenna would just point to where we thought we needed the coverage. Then we had MIMO to allow us to pass more data simultaneously to a user, but it was really SU-MIMO passing more than twice the data to an individual user. We also had beamforming, used heavily in TDD, like Wi-Fi, to reduce interference and concentrate that low power signal to where the users were. Lower interference and increase gain to the user.

Now, on the road to 5G, we have mutated all of this to something extreme. You know, like the X-Men, we have LTE and RF superpowers! The superpower to increase coverage and densification using the antenna and the radio and the electronics to make one antenna do the job of 32 or 64 or even 128 at this time. Who knows what the future will hold.5g-deployment-plan-front-cover-3k-pixels

With beamforming you can concentrate the signal to one user, increasing the gain of that element and talk to one user while the elements are talking to another user.

Does this save money for the carrier?

Trick question! I wanted to see if you were paying attention here, so I threw in a trick question to make sure your on your toes and wearing your thinking cap.

It will cost money up front. The carriers have to replace the antennas and the radio heads. They now have to install the massive MIMO antennas. They have to run fiber and power to the antenna because it no longer has the radio head broken out. It is all one unit. They have to upgrade their BBUs, I would think, and upgrade the backhaul, (fiber) so that they can deliver 10Gbps to every macro site, maybe 100Gbps. Because now you could have 64 users all crying for 1Gbps to each device.

Up front, they have to replace hardware, install new units, and replace most everything at the cell site. Up front, it’s more money.

OpEx will increase for the backhaul. They will need more fiber, more bandwidth, more monthly cost on the backhaul

Now, it will save money in the long run. Here is what I see and it’s not as clear as I would like to make it. Please, use your imagination, will you?

The savings will be that the macro site can now supply well over 10 times the users it could before. In urban areas, this is a game changer! What does this mean? Fewer small cells to be deployed for offloading! If you have a kick-ass macro site throwing data out to many users simultaneously, who needs those pesky small cells in the same coverage area as the macro site? If you don’t think this is a thing, look at any carrier in NYC or LA, they have to offload everywhere. This can start to decline.

Coverage improves as the elements offer higher gain to individual use. This is a small gain, but the edge of the macro should see better coverage as well as throughput. Again, better handoffs and fewer small cells on the edge.

The equipment is smaller than before, and you eliminate the need for the radio head and all that annoying coax between the radio head and the antenna. You heard me! One unit, an active antenna that eliminates the need for coax at the site. This means no more Passive Modulation Interference from all those coax connections. Don’t you hate doing all the PMI testing at the site? I do, and it costs a lot of money, and there is no guarantee that it won’t happen 3 days after you leave the site. Yes, PMI sucks!

Smaller equipment at the site means that it could save the carrier money on-site rental. However, I have to tell you, ATC and CCI have ironclad leases. This is more of a pipe dream. One thing I learned is that the tower owners will NOT lower rent, they only increase rent, and they have leases so tight that Houdini could not get out of one. The thing it may hurt is the small cell leases. If the macro is kicking ass in coverage and loading, maybe a carrier could eliminate some of its small cell sites. That is a considerable cost saving when you look at the backhaul and rent. The equipment and installation are cheap, but the fiber costs are still pretty high.

Who will roll this out?

I have to tell you, the best way that I see massive MIMO beamforming rolling out is by using TDD. It’s cost effective and eliminates the need for separate transmit and receive elements. That means that if you use FDD, you would need 64 transmit and 64 receive elements in one antenna. Ouch, that just got really expensive. But wait, if you have TDD, then you could use 64 elements because the transmit and receive are shared in the same element.

Now, who has TDD in the USA? Can you guess? Go on. I’ll give you another minute. That’s right; Sprint has a crapload of 3.5GHz spectrum that is all TDD that is no longer Wi-MAX. In fact, they are migrating to LTE everywhere. They have a prime opportunity to roll out an incredible system. Will they do it? I hope so, but only time will tell.

That is why the other carriers are clamoring for mmwave and cmwave so that they can also have this technology. Does that make sense?

For this reason, I see Sprint winning this race, if they can get out of their own way. they have not made the best tech decisions in the past decade, in my opinion. Keep the deployment simple, get the teams on the same page, and for GOD’s sake, align with your vendors.

What spectrum will use this technology?

Another good question. It appears that 2GHz and up will work well for this. That means Sprint has prime 2.5GHz spectrum that aligns well with this technology.

The CBRS, 3.5GHz is well suited for this technology. While it is low power, this offers great control to allow the carriers to get the biggest bang for their buck. The lightly licensed users may not use the technology because of price and payback. Usually, private LTE networks won’t invest in anything this impressive, (code work for expensive).

It looks like the 4.4 to 4.9GHz spectrum is also ideal, good news for Japan!

Above 20GHz, where the mmwaves live, it looks to be ideal. So, when AT&T and Verizon start pushing this envelope, they will rely on this technology to deploy. Why, because the massive MIMO will allow them to cram a lot of elements into one antenna. You see, at that spectrum, the antenna elements are tiny, so they could see antennas with a high count of elements. I would think they would see 128 by 128 for almost everything. It would be a game changer, especially for fixed wireless.

Summary:

This new technology takes what the OEMs learned form MIMO and beamforming and put it together to create a new type of macro site. This makes the antenna a team player getting the signal to the end-user in the most efficient way possible. The elements of the antenna each have their own radio head and control. Using this technology to create parallel RF streams of data to the user increases throughput and loading all at the same time. That is what I call smart technology.

We have an active antenna that can do massive MIMO and 3D beamforming all controlled by a base station with even more features in it like carrier aggregation, higher throughput, more carriers, and advance interference rejection. All that and coverage improves, better densification from one BTS. WOW! We’ve come a long way, baby.

All of this so that the throughput and use loading goes way up.

I have it listed in the resources section, but a good paper on this has been put out by Nokia at https://onestore.nokia.com/asset/201377/Nokia_5G_Beamforming_mMIMO_White_Paper_EN.pdf if you have time to read it.

What can you do?

Prepare for this new technology! Come on, all the cool kids are learning it. The OEMs are relying on this as a precursor to 5G for whatever the carrier plans to use it for. What services will be needed for this? Let me count the ways:

  • RF Design – to deploy, it needs to be planned out properly to avoid self-interference.
  • Installation of new material.
  • Site engineering.
  • Commissioning, Integration, Testing, Optimization all done for the new sites.
  • Drive testing to verify it works the way we all hope it works.
  • Then, self-optimization should start cleaning up the services.
  • Then the end users will have to evaluate how awesome it is.
  • Then the carrier can start re-evaluating the use of small cells.

Resources:

Be smart, be safe, and pay attention!

See Ya!

Go crazy and follow me on WordPress, Amazon, Twitter, LinkedIn, or Facebook.

Just click and follow! Thank you!

  Get all your updates via email!

 

Tower Safety for all your safety training!

 

 

 

Get the Wireless Deployment Handbook today!

 

5g-deployment-plan-front-cover-3k-pixels

 

 

 

 

 

 

 

 

Sign-up to get all your updates!

 

SOW Training Cover

Do you know what to put in your SOW, the details needed to get paid for milestones or job completion? 

 

Putting together your smart city tech solutions, planning, development, and more….TechFecta! Guiding you to a better plan through consulting!

The foundations below do beautiful work, helping families in their time of need. Climbers often get seriously injured or die on the job. The foundations below support those families in their time of greatest need! 

official logo

Hubble Foundation helps the families of climbers in a time of need and beyond with financial support and counseling!

tower-family-foundation-e1447069656192

Tower Family Foundation supports the families of tower climbers at the time of crisis when a climber falls with financial assistance and more.

 

What is Massive MIMO?

What is massive MIMO? Let’s start with MIMO, Multiple in Multiple out.

What is MIMO?

Well, in wireless technology MIMO means that you have several antennas and radios all on one BTS. So, you have one BTS with a

sector that has multiple antennas for transmit and receive. So, the alpha sector could have four transmit and four receive all in one panel. With only a few transmit and receive, the radio head could be behind the antenna. MIMO is already deployed across the US by almost all the carriers helping LTE reach the speeds it has today. That along with carrier aggregation, improved processing, optimization techniques, and a myriad of additional features making that smartphone look faster than your laptop when running an app.

What is massive MIMO?

This is where we have more active elements in the antenna; this could be 64T64R or 128T128R or even higher. The 64T is 64 transmit elements, and 64R is 64 receive elements. Just imagine the feature we get from MIMO, listed above, are suddenly on steroids and making the current features even better! WOW!

This changes many things on the tower. Since running 64 coax jumpers is not practical, the OEMs are inclined to create an active antenna. That would be an antenna with the radio head inside of the antenna so that they could have a connection between each radio head to each element. It just makes sense. No more coax and fiber direct to the antenna. No more radio head and power to the antenna.

What changes will happen in the eNodeB? The BBU will need to handle more processing than ever! They will also need to improve the BBU, the baseband unit.

Why do we need massive MIMO?

Several reasons come to mind, listed below, feel free to add more.

  • High bandwidth needed for throughput
  • Spectral efficiency for improved spectrum usage
  • Lower latency
  • Improved device density connectivity
  • It is a step towards 5G

What does the BBU need to do to support massive MIMO?

It needs to process so much more data. Now, instead of controlling one or 8 radio heads, it will need to process and distribute the power Get the Wireless Deployment Handbook today!across 64 or more individual radio elements. It needs to pass more data.

The BBU needs to be significantly improved. What will it do?

  • Process more data
  • More bandwidth
  • Control more radio heads
  • Talk to more UE devices
  • Handle carrier aggregation
  • Process more services simultaneously
  • Perform self-optimizing network, SON, services
  • Capture data
  • Handle neighbor list to avoid interference

 

What about the backhaul?

It needs to be upgraded to handle more data since we are now going to increase the broadband throughput. 1Gbps backhaul may not cut it because it may need to be much more. What does this mean?

  • Better routers at the sitesSOW Training Cover
  • More strands of fiber for each site
  • Aggregation of the fiber carriers so that it looks like a massive pipe of over 10Gbps
  • Improved network slicing functions for the router to perform more functions than before

What about the fronthaul?

The fronthaul is the fiber, (or wireless), the line between the BBU and the radio heads which now should be in the active antenna.

This may require more strands per sector so that the data can be sent to each sector. Look at it this way, instead of dealing with one antenna with 4 to 8 elements; now you are dealing with one active antenna that could be simultaneously sending data to more than 64 elements in one concentrated antenna system. That is a lot of data! In theory, it could be more than 1Gbps per sector! WOW!

Fronthaul will need to be:

  • Improved for more bandwidth and data
  • Lower latency than before
  • Perhaps more strands of fiber

Can CRAN or C-RAN be a massive MIMO system?

The jury is out because of the massive bandwidth and low latency. This is going to be worked out, but it is essential that we know that a Centralized RAN and a Cloud RAN are essential parts of the 5G system. As you all know, massive MIMO is a huge stepping stone for 5G.

What about CRAN and C-RAN?

This is going to be a challenge to get to no BBU at the site, but it can be done. The need for MEC, Mobile Edge Computing is still there because we want low latency. That is right; the routing needs to be as short as possible. Also, the RF equipment is doing an excellent job of lowering latency. The 5G standards are asking for lower and lower latency, looking for 1ms or less, wow! That is going to be a real challenge if you rely on the cloud to do the BBU processing or if you have the BBU hotel somewhere else. Why? Even though it is light running through the fiber, it takes time to travel across town, the state, or anywhere. Hence, that is how MEC may be able to save the day! Direct routing would be a key factor instead of running everything back to the core.

How does it affect the UE device?

The UE probably won’t have more than four antennas in it, if that. They may have 2 to 4 receive antennas, and two transmit. The thing is though, with massive MIMO and the way it should work, an element or 2 can focus on one US device freeing up the other to talk individually to other devices. This will improve throughput and lowers latency.

The bottom line is that it will help the UE in 2 ways. The UE will get more bandwidth, especially as they add more antennas internally, they already have two receive in most devices which allow for better downloads. The massive MIMO will be able to talk directly to an individual device and lower latency. This will help the response time of the device, making the device seem more responsive and once again, quicker! Now it is up to the device makers to speed up the internal processing speed and improve the memory in each device so that we can enjoy the new low latency services.

What changes at the site?

This is going to require new equipment at the site, no matter how you look at it. The equipment that is there now will need to be upgraded or replaced. Most likely, some of it will need to be replaced. It would make sense to have 64 or more radio heads so that you would replace the existing antennas and radio heads with an active antenna. You would remove all coax and run fiber to the antenna. You would need a BBU that can kick ass with processing power and bandwidth. You need to improve your backhaul, which means a better router CRAN quality equipment at the site. You need to improve your fronthaul between the BBU and the active antenna.

What does it mean for business?

Here’s the deal, the equipment we have today will not cut it. Replacing the existing BBU and radio heads and antennas with the new system. It must happen. So, this means a lot more work for the deployment crews. As always, it will all happen at once, causing a strain on the tower workforce.

  • Tower crews – busy replacing equipment on tower and the ground
  • Engineering teams – new RF engineering and optimization along with drive tests to complete the rollout of the new system. Let’s not forget the potential for self-interference that’s going to happen. There is a learning curve.
  • Backhaul:
    • The fiber needs to be upgraded, new fiber or additional fiber.
    • Wireless backhaul will need to be replaced, added, or upgraded.
    • The router needs to be upgraded or replaced.
    • Backhaul will need to be upgraded, so the service provider had a real opportunity to make some additional money on installation and possibly monthly reoccurring for fiber delivery services.
  • The OEMs will have a significant push for getting the new gear out to carriers, mostly in urban areas, so it will not be the entire system that gets upgraded, but the specific markets where loading is needed or where 5G is a priority.
  • The carriers need to invest in this, apparently, the stepping stone to real 5G bandwidth and performance. Enough said.
  • The tower companies may not get any more money. The way most leases are written leaves room for these upgrades. Of 5g-deployment-plan-front-cover-3k-pixelscourse, the tower companies will find ways to make incremental dollars like site access, new structural for less weight, and so on. What they will not get is the additional rent money that is their bread and butter. However, we will Those larger tower owners are savvy.
  • What about small cells? I bring this up because, in theory, the way that the massive MIMO improves densification it may reduce the need for a small cell that usually would fall within the coverage area of the tower for loading purposes. This hurts me to say, but small cells will be a fill site outdoors. Indoors we will still need small cells for coverage and offloading. The outside in coverage does not cover as well with new environmentally friendly windows. We need the indoor small cells more than ever.
  • Looking at the additional parts associated with the deployments we need to see that coax is going to be reduced dramatically. What’s the need when you run fiber everywhere. Let’s look at the list and make this easy.
    • Coax, hardline, jumpers, and associated connectors and ground kits will no longer be needed for this type of deployment. Get ready to see a lot more of the old stuff on the scrap metal places.
    • Fiber will increase. I am curious if the carriers will continue buying the hybrid cables for fronthaul or if they will just buy armored fiber lines to run to the radio heads up the tower or in the rooftops. They still need power to the antenna, which they initially needed for the radio heads. Remember that the connectors may change, so we will have to think about the distribution of jumper.
    • Tower mounts may change. All the weight from the radio heads will be shifted to the actual antenna mount. Whether it is a simple mast of the whole mount. The radio head weight will be gone from behind the antenna, and now it is going to be in the antenna. Weight distribution has changed from being evenly distributed to being concentrated on the antenna. Site engineering should be fun.
    • Possibly power upgrades will be needed which means potentially new rectifiers and battery upgrades and then utility upgrades. Remember that we were trying to get more power efficiency at the sites, this may be a set back for that effort. If you need a new rectifier, then maybe new or additional batteries and associated cables and hardware. Then the power from the utility to power said rectifiers.

Get the massive MIMO FULL in-depth report today! 

Be smart, be safe, and pay attention!

See Ya!

Please! Follow me on WordPress, Amazon, Twitter, LinkedIn, or Facebook. Just click and follow! Thank you!  Get all your updates via email!

 

COP Banners for Wade4wireless

Tower Safety for all your safety training!

 

 

 

Get the Wireless Deployment Handbook today!

 

5g-deployment-plan-front-cover-3k-pixels

 

 

 

 

 

 

 

 

Sign-up to get all your updates!

How do you plan goals? Now you can plan 5 Weeks at a time! The 5-week Planning Journal, (click here), available now in paperback from Amazon!

 

 

 

 

SOW Training Cover

Do you know what to put in your SOW, the details needed to get paid for milestones or job completion? 

 

Putting together your smart city tech solutions, planning, development, and more….TechFecta! Guiding you to a better plan through consulting!

The foundations below do beautiful work, helping families in their time of need. Climbers often get seriously injured or die on the job. The foundations below support those families in their time of greatest need! 

official logo

Hubble Foundation helps the families of climbers in a time of need and beyond with financial support and counseling!

tower-family-foundation-e1447069656192

Tower Family Foundation supports the families of tower climbers at the time of crisis when a climber falls with financial assistance and more.